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Electron diffraction by a cylindrical capacitor 
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Abstract. The diffraction of electrons by a cylindrical capacitor is formulated in terms of 
conventional quantum scattering theory. Using several approximations valid in the short 
wavelength limit, the theory is reduced to a form that allows direct comparison with 
formulae based on the diffraction integral, thereby clarifying the content of the latter. A 
recent, alternative treatment of the same problem is shown to be in error. 

1. Introduction 

The diffraction of electrons around macroscopic objects provides clear evidence for the 
wave-like nature of matter (Komrska 1971). A particular example of such well 
established experiments is the interference pattern produced by an electrostatic 
biprism. As first described by Mollenstedt and Duker (1955, 1956), a diverging 
electron beam is sent around a metallised filament placed between two grounded plates, 
thereby separating the beam into two parts. By applying a positive potential to the 
filament, the two parts of the beam are then made to recombine in the observation 
plane, where they produce an interference patterri whose detailed structure depends on 
the strength of the applied potential. 

At the simplest level of analysis, one can understand the separation of extrema in the 
pattern by comparing the path length difference for classical trajectories that pass on 
one side or the other of the filament (Donati eta1 1973). This approach is easy to apply 
and is readily extended to more complex situations, as for instance to include a magnetic 
field. Yet it is also of interest to develop a more detailed analysis that allows a 
quantitative treatment of the complete pattern for the simplest configuration. Such a 
treatment has been derived from the diffraction integral approach, which itself is 
adapted from optics; see Komrska (1971) for a review of this theory. Here one relates 
the electron wavefunction in the observation plane to reasonable estimates of its values 
in a plane perpendicular to the incident direction and passing through the filament axis. 
The comparison of this theory with experiment is quite impressive (Komrska 19719. 

Still it is of theoretical interest to consider this model problem from other points of 
view. We present here a treatment derived from the conventional theory of quantum 
scattering by symmetric objects, which is based on phase shifts and an angular 
momentum sum. Our aim is not only to show that this approach can be carried through 
but also to use it to clarify several aspects of the diffraction integral theory. Work with a 
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similar goal was recently presented by Gesztesy and Pittner (1979), but unfortunately 
their results are flawed, as we shall discuss later. 

In 8 2, we present the derivation of our basic formulae and iG$ 3 we describe the 
calculation of the necessary phase shifts. Section 4 contains our discussion and 
conclusions. 

2. Formal theory 

The essential configuration of the scattering experiment is shown in figure 1. In this 
idealised picture the potential is cylindrically symmetric and independent of the third 
dimension, so we may treat the scattering process as two-dimensional. The incident 
beam is considered to emerge from a point source at I, pass through the region of finite 
potential, a s 1x1 = x < b, which is centred on the origin of the filament, and be detected 
along the arc xo. Electrons that strike the filament, x <a,  will be assumed to be 
removed from the beam, while those beyond x = b feel no potential. We neglect the 
finite width of the source and detector as well as the small range of electron energies. 
Such effects may be incorporated by an appropriate average of our results (Drahos and 
Delong 1964). 

\ 
A \ 
I 

/ I 

le / 
Figure 1. Sketch of idealised experimental configuration. The distance scales are distorted 
because in practice x,, x, >> b >>a. See text for further description, 

The key assumptions for our analysis are that the potential energy, V, is cylindrically 
symmetric and of finite range, for they allow us a tractable decomposition of the 
wavefunction into angular momentum components. The scattered wave solution may 
be written as 

(2.1) 
where q5 is the incident wave, G,' the outgoing free-particle Green function, and T' the 
t-matrix associated with V. To represent the diverging incident wave, we choose 

II, = (1 + G: 7+)q5, 

4(x)  = H b " ( k l x - x i ( ) ,  (2.2) 
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where k = (2mE)”2/h with E the energy and m the mass of the electron, and Hb” is a 
cylindrical outgoing wave (Abramowitz and Stegun 1964). Then expanding both G,’ 
and T+ in terms of appropriate angular harmonics, e”’, with 8 measured from the axis 
ID (Morse and Feshbach 1953), we obtain, when x, and xo are greater than b, the range 
of the potential, 

$(x,) = H?’ (klx,-x,l)+ 1 e“soH(” (kxo)t(e21s1 - 1)Hi” (kx,) (2.3) 

where Hi” are Ressel functions (Abramowitz and Stegun 1964), 8, = T and S I  is the 
phase shift for the lth partial wave. It is defined by the requirement that the 1-wave 
solution of Schrodinger’s equation which is regular at the origin becomes a constant 
times e’”H[” (kx) + e-161H!2) (kx) for x beyond the range of V. 

The approach leading to (2.3) is formally exact and is merely the two-dimensional 
analogue of well known three-dimensional theory (Lloyd and Smith 1972). The 
difficulty in its exact solution here is that the sum on 1 extends to values of the order of 
kb, which can be as large as lo9 (Komrska 1971). We hence apply the following 
approximate scheme which was developed for the scattering of neutral atoms by 
macroscopic cylinders (Mehl and Schaich 1980). First rewrite the second term in (2.3) 
as the difference of two expressions: 

m 

l=-CC 

and 

F, = F{S/ O}. (2.5) 

Although both F and F, are divergent sums, due to the lack of the cut-off provided by 
- 1) at large Ill, these infinities will cancel in forming F - F,. Our interest lies with 

the finite contribution to them coming from JEl/k smaller than xo or x,. For F,, which is 
independent of the potential energy V, one may confidently proceed with a semiclassi- 
cal attack: replace the 1 sum by an integral and evaluate the finite part of the integral by 
the stationary phase approximation. Using the asymptotic expansions (Abramowitz 
and Stegun 1964) 

(2/ 
H l ” ( z ) =  - 2  1,4exp[i((z2--12)1’2+l ( l + O ( ~ ~ - l ~ ) - ” ~ ) ,  (2.6) 

(i. - 1 )  

we find a stationary phase point in the F, expression at 

1, = -kx,x, sin Oo/lxo - x,/ (2.7) 

about which we expand the phase to second order in 1 - 1, = Al. An integral over all 41 
then yields 

F, Hb” (k Ix, - ~ , l ) ,  (2.8) 

i.e. the finite part of F, that is not identically cancelled by F reproduces the incident 
wave. For (2.8) to be valid both kx, and kx, must be large and I1,l must be much smaller 
than either of them. From (2.7) we see that this latter condition only holds in the 
forward direction, but in typical experiments 8, is never more than rad (Komrska 
1971), so it is easily satisfied here. The utility of (2.8) is that it implies that the total 
wavefunction is well approximated by the finite part of F{SI} .  
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The evaluation of F by the same means as used for F, is in general not as easily 
justified. One must examine the variation of the phase shift with I .  We postpone this 
until the next section and here simply write F as an integral over 1. Further, we make 
several simplifying approximations: we expand the 1 dependence of the Bessel 
functions (2.6) to low order and set the scattered intensity proportional to kl$(x,)I2 
(Komrska 1971), to find 

I / I o -  I J  dl  exp[i(I0,+12/2kr+2fi,)ll / 2 x k r  
-m 

(2.9) 

where l / r  = l / x , +  l / x i  and I / Io  is the ratio of the flux at xo with and without the 
capacitor being present. This formula, like (2.8), is only valid in the forward direction 
and there should be no large l I I  contributions (i.e. from 1/15 kr)  because of rapid phase 
oscillations. In this way, we separate off the finite physical contribution to F. 

Equation (2.9) allows a preliminary comparison with the diffraction integral result 
for this model problem (Komrska 1971, equation (161)). There the analogue of the 
integral over 1 is expressed as an integral over -k& where is an effective impact 
parameter measured from the filament centre in the diffraction plane, i.e. along the line 
AB in figure 1. For a detailed comparison of the two formulae we need to find the 8,. 

3. Phase shifts 

In the same spirit as the derivation of Q 2 ,  we shall estimate the phase shifts using WKB 
theory. There is a qualitative change in the phase shift when Ill passes through ka. For 
I I I  smaller than ka, an electron in its radial motion encounters no turning points until it 
strikes the surface, where we assume it is lost from the beam. This means that an 
incoming cylindrical wave produces essentially no outgoing cylindrical wave, so 

exp(2i8yKB) = 0, 111 6 ka.  (3.1) 

On the other hand for I I l >  ka,  there is an outermost turning point, rtr which, as Ill 
increases, moves well above the surface. Applying the simple WKB connection 
formulae (Newton 1966) at this turning point, we obtain 

and specifically 

where 

q ( r )  = k [ l -  1 2 / k 2 r 2 -  V(r ) /E] ' '* ,  4 ( r t )  = 0, 
qO(r)  = k [ l  - 12/k2r2]1 '2 ,  qO(IIl/k) = 0. 

Thus the WKB phase shift is just the shift in phase calculated with and without V. We 
have written approximate equalities in (3.1) and (3.2) because the change in behaviour 
is actually spread out over a range of 1. There exist more sophisticated WKB theories 
(Berry and Mount 1972, Froman and Froman 1965) that allow one to describe this 
transition, but for their evaluations we would need to know the detailed form of V near 
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r = a. Here we simply use 

V(r )  = E In r/b, E = lel4/ln a/b< (3.6) 
where le14 is the potential energy difference between a and 6, since a rough estimate 
using in addition an image potential in V shows that the transition region is only about 
Al/k - 1 A wide, whereas a - l o3  A (Komrska 1971). We also neglect the shift in the 
location of the transition region with the applied potential, since experimentally 
€ / E  << 1. 

is the analogue of the transmission function used 
in the diffraction integral approach (Komrska 1971). An advantage of the present 
formalism is that one can systematically improve its calculation, although for this 
particular problem it is well approximated by a step function. We also remark that 
Gesztesy and Pittner (1979) used a different boundary condition in their analysis: 
perfect reflection rather than complete absorption on the filament surface. 

From our results one sees that 

To evaluate (3.3) we use the identity (Newton 1966) 

dsyKB/dl  = - 2 @ ( 0 ,  (3.7) 
where CP(1) is the classical deflection angle for an electron of angular momentum lh. We 
roughly estimate CP by calculating the transverse momentum given to an electron 
moving along its unperturbed trajectory (Landau and Lifshitz 1960). Then integrating 
(3.7) and using (3.6) we obtain 

E 2 2 1/2 

E 
=-kb[(l-[ b ) -[/b  COS-^ [ / b ] .  (3.8) 

Since the important values of 111 in (2.9) are much less than kb, we expand (3.8) to 
3 

2SjhiKB =-[kb-lll(----&+. E n- I l l  . .)I. 
E 2 2kb 24k b (3.9) 

A simpler way to the limiting result is to note that the deflection angle is for ka < / I 1  << kb 
essentially independent of 1 (Donati et a1 1973): 

I@[I-&E/E<< 1, (3.10) 
so by (3.7) 

2SyKB -constant -illln-E/E, ka<lll<< kb. (3.11) 

We stress that the various approximations that lead from (3.3) to (3.11) are not required 
by our method, but instead are appropriate to the model problem we consider here. In 
the atom scattering problem one had to resort to a full solution of Schrodinger’s 
equation to obtain sufficiently accurate values of Si (Mehl and Schaich 1980). 

If we substitute (3.9) and (3.1) into (2.9), we obtain to within a phase factor 
Komrska’s diffraction integral result (Komrska 1971, equation (16 I)). The discrepancy 
in phase is given by 

(3.12) 

It results in our language from Komrska’s use of an alternate trajectory for calculating 
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0, and hence S. His approach is similar in spirit to the two-asymptote approximation 
for 0 discussed by Fulcher et a1 (1976), but since (3.12) involves r and 8, it cannot be 
obtained as a correction to which depends only on the scattering potential. In any 
case (3.12) makes merely a small change in the 1 variation of the phase in (2.9), and the 
experiment is not sufficiently accurate to demonstrate its presence. 

We conclude this section by noting that even for 111 > ka the phase-shift formulae of 
Gesztesy and Pittner (1979) do not agree with ours. For the analogue of (3.11), they 
find (see their equation (4.6)) a faster than exponential fall-off with and no 
dependence on € /E .  Their method involves approximating a polynomial series 
representation of the exact solution of Schrodinger’s equation, and it is not clear from 
their brief description wherc an error arises. We can only say that the approximate 
wavefunction they present in their (3.6) leads directly to their (4.6), which disagrees 
with our (3.11). This error leads them in subsequent analysis of the scattered intensity 
to predictions that disagree with previous theory and experiment (Komrska 1971). For 
instance, their (8.10) claims that the motion of the Fresnel pattern is quadratic, rather 
than linear, in  the applied potential. 

4. Discussion 

Coupling the phase shifts of § 3 with equation (2.9), one can now evaluate the scattered 
intensity. Note that the variation with 1 of (3.8) is sufficiently weak to justify using the 
integral in (2.9). Further, if one uses the limiting form (3.11), the required integrals are 
of the Fresnel type (Abramowitz and Stegun 1964). However, we do not present such 
calculations here but instead refer the reader to Komrska’s evaluation of the diffraction 
integral (Komrska 1971), which as we have shown is essentially equivalent to (2.9). We 
only remark that the primary features of the interference pattern can be understood by 
a stationary phase evaluation of (2.9). 

To summarise, for the particular model problem of the electrostatic biprism, our 
derivation reproduces the diffraction integral results. We have presented the derivation 
in the spirit of a semiclassical approximation with no quantitative estimate of the error. 
Such estimates can be made (Mehl 1980, unpublished), but they are numerically 
unimportant for the problem treated here. We feel that it is more important to focus on 
the prescriptions for what is to be calculated and to appreciate the different point of 
view offered by our approach. 

It is remarkable that the sum of incident plus scattered waves in (2.3) combine to 
yield a single expression (2.4) for the total wavefunction. We have checked that such a 
cancellation of the incident wave in the forward direction also occurs for an incident 
plane wave, and for analogous situations in three dimensions with a spherically 
symmetric V. 

For calculational purposes it is reassuring that the transmission factor and phase 
differences of the diffraction integral can be expressed in terms of the Sl,  for the accuracy 
of the latter can be systematically improved. There is no limitation of (2.9) to weak 
potential energies, except that one might have to sum over 1 rather than integrate. 
However, independent of potential strength, (2.9) only holds in the forward direction 
(specifically when 11,1 of (2.7) is much less than kr )  and is helpful only in the Fresnel limit 
k a 2  >> r, which applies in the experiments considered here. 

The fact that our approach, whose existence depends on the cylindrical shape of the 
scatterer, agrees with the diffraction integral, which neglects its shape, is heuristically 
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satisfying. Yet this is also the weakest point of our approach: it is limited to configura- 
tions of high symmetry. The diffraction integral has a much wider range of useful 
applications (Komrska 1971). 
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